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Photonic crystals �PhCs� with a degenerate band edge �DBE� are dispersion-tailored materials composed of
a periodic arrangement of misaligned anisotropic dielectric layers and an isotropic dielectric layer. DBE PhCs
yield an �approximately� quartic dispersion relation just below the DBE frequency rather than the conventional
quadratic dispersion relation present below a regular band edge �RBE�. We present a sensitivity analysis of the
performance of DBE PhCs under various perturbations. This analysis is made possible by means of an uncon-
ditionally stable finite-difference time-domain scheme to solve Maxwell’s equations in anisotropic media based
on a complex-envelope alternating-direction-implicit algorithm. Numerical simulations are performed to ex-
amine the gigantic field intensity enhancement at Fabry-Perot resonances associated with finite-stack DBE
PhCs. Numerical simulations are also used to investigate the sensitivity of field enhancement effects against the
bandwidth of the excitation. The effects of layer thickness perturbations, grounding, and dielectric losses on the
electromagnetic response of DBE PhCs are also examined. The numerical results are used to compare Fabry-
Perot RBE resonances against Fabry-Perot DBE resonances.
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I. INTRODUCTION

Dispersion-engineered materials have attracted much at-
tention for a myriad of applications at microwave, mm-wave,
and optical frequency ranges. Periodic media such as photo-
nic crystals1–10 �PhCs� are of great interest as materials with
tailored dispersion because they have simple �planar� geom-
etries and easy frequency tunability. Magnetic photonic crys-
tals �MPhCs� are a special class of PhCs made of misaligned
anisotropic dielectric layers and ferromagnetic layers that
display an asymmetric dispersion diagram ��k� with a sta-
tionary inflection point �SIP�.3–9 MPhCs have striking elec-
trodynamic properties such as vanishing group velocity, gi-
gantic amplitude increase �with close to unit transmittance�
at the SIP frequency, and electromagnetic unidirectionality.
More recently, PhCs with a degenerate band edge �DBE�
were proposed by Figotin and Vitebskiy6,7,10 to yield a gigan-
tic amplitude increase in nonmagnetic periodic materials.
DBE PhCs can be constructed by employing, for example,
two misaligned anisotropic dielectric layers and one isotropic
layer in each period. DBE PhCs exhibit an approximately
quartic dispersion relation just below the DBE frequency
rather than the quadratic dispersion relation present below
regular band edge �RBE� frequencies. In order to achieve
high transmittance, Fabry-Perot resonances �associated with
narrow-band transmission peaks� are exploited in finite-size
periodic stacks. Finite-size DBE PhCs can produce gigantic
amplitude increase at Fabry-Perot resonances with very good
transmittance �matching� �Ref. 10� properties.

The detailed study of such materials—including sensitiv-
ity analysis to both geometric and material perturbations, in-
cluding dielectric losses—is best done by full-wave numeri-
cal techniques, since the periodicity is broken in those cases.
Among full-wave techniques for solving Maxwell’s equa-
tions, the finite-difference time-domain �FDTD� method11–13

is quite suited to simulate transient electromagnetic fields in
inhomogeneous anisotropic dielectrics such as DBE PhCs.

One of the main challenges in the analysis of DBE PhCs by
a finite-difference technique is that the spatial discretization
cell size needs to be very small in order to correctly capture
the sharp field distributions inside the structure. Unfortu-
nately, the time step size of the conventional FDTD method
is limited by the Courant stability criterion, which imposes
an upper bound on the time step size based on the spatial cell
size. This leads to a prohibitive number of time steps for the
FDTD method. An alternative choice would be to employ the
alternating-direction-implicit �ADI� FDTD algorithm,14–17

which is an unconditionally stable method where the time
step is not bound by the Courant criterion. However, the
numerical accuracy of the ADI-FDTD algorithm deteriorates
as the time step size and/or the maximum frequency
increases.18 Contrary to the ADI-FDTD algorithm, the nu-
merical accuracy of the complex-envelope �CE� ADI-FDTD
algorithm19–22 is governed by the bandwidth of the excita-
tion, not by the maximum frequency. Therefore, the CE-
ADI-FDTD algorithm is especially suited for an analysis of
DBE PhCs. Numerical aspects of CE-ADI-FDTD can be
found elsewhere in Refs. 20 and 21.

In this work, we model the DBE PhC response in detail,
examining field enhancement effects and providing a sensi-
tivity analysis under geometric perturbations and the pres-
ence of dielectric losses. The effect of a ground plane on the
DBE PhC response is also considered. The present analysis
is made possible by extending the CE-ADI-FDTD algorithm
to anisotropic media. The remainder of this paper is orga-
nized as follows. We first outline the basic electromagnetic
properties of DBE PhCs in Sec. II. Numerical results com-
paring the field amplitude enhancement in DBE PhCs and
RBE PhCs, as well as the effect of a ground plane on the
DBE PhC response, are presented in Sec. III. In addition, a
sensitivity analysis of the DBE PhC response against layer
thickness variations and anisotropic dielectric losses is car-
ried out, where a further comparison against RBE PhC is
made. Concluding remarks are provided in Sec. IV. Details
on the extended CE-ADI-FDTD algorithm developed here
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are included in the Appendix together with a summary of its
relative computational performance.

II. DBE PHOTONIC CRYSTALS

We consider semi-infinite periodic media composed of
two anisotropic layers �A layers� and one isotropic layer �B
layer� depicted in Fig. 1. Here, we assume the B layer as air.
With a proper choice of thickness and permittivity tensor
parameters, one can tailor the dispersion relation to produce
stationary points associated with either a RBE or DBE. As
illustrated in the band diagrams shown in Fig. 2, the disper-
sion relation ��k� can be approximated as �b−�� �k−kb�4

just below a DBE frequency or as �b−�� �k−kb�2 just
below a RBE frequency, respectively, where �b and kb
are the angular frequency and wave number, respectively,
at the band edge.10 Below the DBE frequency, electromag-
netic waves propagate at a very slow group velocity
�vg=�� /�k� ��b−��3/4�.

In the infinite-medium case, the transmittance decreases
and gradually approaches zero as the frequency � ap-

proaches either the DBE or RBE from below. However,
when a truncated �finite number of stacks� DBE PhC is con-
sidered, Fabry-Perot cavity resonances are produced depend-
ing on the number N of unit cells. The resonances below the
DBE frequency are shown for N=8 and N=16 in Fig. 3. As
N increases, the Fabry-Perot resonance frequencies move
close to the DBE frequency �while the transmission bands
are narrowed�. As Fabry-Perot resonances move just below
the band edge, a dramatic increase in field intensity is pro-
duced because of the wave slowdown �decrease in the group
velocity�, similar to what occurs in MPhCs.4 Hence, a larger
N leads to greater growth in field intensity. We also mention
here that because the group velocity is smaller below the
DBE frequency �from the quartic dispersion relation� than
the RBE frequency �from the quadratic dispersion relation�, a
much larger increase in the field amplitude is produced at
DBE-based Fabry-Perot resonances than at the RBE counter-
part �for same N�.

III. METHOD OF ANALYSIS

We next examine the PhCs considered in Ref. 10 using
the CE-ADI-FDTD algorithm described in the Appendix. To
validate the present CE-ADI-FDTD algorithm, CE-ADI-
FDTD results are compared with FDTD results, showing
very good agreement �see the Appendix�. The accuracy of
CE-ADI-FDTD results is nearly invariant unless the time-
step �t is made close to the Nyquist limit.23 Therefore, com-
putational time can be greatly reduced utilizing CE-ADI-
FDTD simulations, since one can choose a much larger �t
for a given accuracy versus the conventional FDTD method.
This makes it practical to carry out the sensitivity analysis
presented in this paper.

The constitutive tensor �relative� parameters are
�A1=�A2=13.61, �A1=�A2=12.4, �A1=0°, �A2=45°, and
�r,A1=�r,A2=1 �see Eq. �A10��, as considered in Ref. 10. The
excitation is a raised-cosine-ramped sine wave with unit
peak amplitude whose carrier angular frequency �c corre-
sponds to the first Fabry-Perot resonance. The layer thick-

FIG. 1. Schematic of a PhC composed of two anisotropic dielec-
tric layers �A layers� and one isotropic dielectric layer �B layer�. The
dispersion relation can be tailored in order to produce a degenerate
band edge by adjusting the thickness and permittivity of each layer.
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FIG. 2. Band diagram showing both a DBE and a RBE. The
dispersion relation can be approximated by a quartic polynomial
just below the DBE frequency and by a quadratic polynomial just
below the RBE frequency �see text for details�.
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FIG. 3. Transmission spectrum of finite-stack DBE PhCs.
Larger N leads to Fabry-Perot resonance frequencies closer to the
band edge and to narrower transmission bands.
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nesses are as follows: LA1=LA2=0.270 545 m and LB
=0.458 91 m for DBE PhCs and LA1=LA2=0.120 545 m
and LB=0.758 91 m for RBE PhCs. This choice yields the
angular frequency of the first resonance near c0 rad /s for
DBE PhCs and 1.6c0 rad /s for RBE PhCs, respectively,
where c0 is the numerical value of vacuum light speed in
m/s. The space step is �z=1 /400 m, multiplied by different
� factors inside each layer to match the respective thick-
nesses. We choose �A1=�A2=0.270 545 /0.27 and �B
=0.458 91 /0.46 for the DBE PhC simulations here. The time
step size is given by �t=NC�B�z /c0, where NC is the Cou-
rant number �CN�. A Courant number NC=250 is used unless
specified otherwise.

IV. INTENSITY ENHANCEMENT RESULTS

First, we analyze a DBE PhC with N=8. Figure 4 shows
the steady-state time-averaged field intensity ��E�2� inside
this finite-stack DBE PhC. The incident field has unit ampli-
tude. Note that the field distribution has sharp variations in-
side the DBE PhC, which illustrates the need for a very fine
mesh resolution. For comparison, we also show the results
for a RBE PhC with N=8. The field intensity in the DBE
PhC is about twice that of the RBE PhC.

Figure 5 shows the steady-state time-averaged �E�2 inside
the DBE PhC with N=16 and inside the RBE PhC with N
=16. As illustrated in Fig. 3, the resonance bandwidth in this
case is narrower than with N=8, but the resonance closer to
the band edge. The gigantic enhancement in the field inten-
sity inside the DBE PhC is clearly visible, with the field
intensity ratio of the DBE PhC to the RBE PhC being about
5.

We next consider the analysis of a DBE PhC with N
=32. From convergence tests, it is determined that simula-
tions with �z=1 /400 m cannot accurately analyze a DBE
PhC that long. In this case, �z=1 /1600 m is required to
capture even sharper field distributions. To make the matter
worse, longer time integration times should be employed to

obtain the necessary frequency resolution given the narrower
Fabry-Perot resonance with N=32. Those two
requirements—very small �z and long integration times—
make it very challenging to simulate DBE PhCs with N
=32. We mention that it would not be practical to simulate
this DBE PhC by either the conventional FDTD or ADI-
FDTD algorithm under our available computing resources.
For analysis of the DBE PhC with
N=32, the CE-ADI-FDTD algorithm with NC=500 is em-
ployed. Figure 6 shows the steady-state time-averaged �E�2
inside the DBE PhC with N=32 and inside the RBE PhC
with N=32, illustrating the great difference in the intensity
increase. A curve fit for these examples indicates that the
peak field intensity is proportional to about N3.8 for DBE
PhCs and N1.9 for RBE PhCs.

Next, we employ a sine-wave-modulated Gaussian pulse
to illustrate the impact of the fractional bandwidth on field
enhancement effects. In this case, NC=50 is employed. Fig-
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FIG. 4. Steady-state time-averaged field intensity �E�2 inside a
PhC with N=8. The incident wave has unit amplitude. Further in-
crease in the field intensity is observed in the DBE PhC versus the
RBE PhC.
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FIG. 5. Steady-state time-averaged field intensity �E�2 inside a
PhC with N=16. The incident wave has unit amplitude. Further
increase in the field intensity is observed in the DBE PhC versus the
RBE PhC.
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FIG. 6. Steady-state time-averaged field intensity �E�2 inside a
PhC with N=32. The incident wave has unit amplitude. A much
larger field intensity is observed in the DBE PhC versus the RBE
PhC. Note the larger difference between the relative intensities ver-
sus Figs. 4 and 5.
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ure 7 and Fig. 8 show the maximum field intensity �E�max
2

inside the DBE PhC with N=8 and inside the DBE PhC with
N=16, respectively. As the fractional bandwidth increases,
the enhancement in the field intensity decreases. A narrower
transmittance bandwidth of the Fabry-Perot resonance for
N=16 versus N=8 leads to a greater impact of the fractional
bandwidth on field enhancement effects �see Fig. 3�.

V. SENSITIVITY ANALYSIS

A. Ground plane effects

In what follows, the time-domain excitation is a raised-
cosine-ramped sine wave. Next, we illustrate ground plane
effects on the DBE PhC response. The ground plane is on the
far end of the DBE PhC. We assume the ground plane to be
a perfect electric conductor �PEC�. Figure 9 shows the
steady-state time-averaged �E�2 inside the PEC-backed DBE
PhC with N=8, showing an approximately fivefold increase

in the field intensity compared to the case with no ground
plane. We note that the spatial distributions in field intensity
are not symmetric anymore. We also examine the effects of
the ground plane on the DBE PhC with N=16 and N=32. A
similar increase of the field intensity and nonsymmetric field
intensity distributions results from including a ground plane,
as shown in Figs. 10 and 11. The peak intensity increase due
to the ground plane is 5.63, 4.03, and 4.04 for N=8, N=16,
and N=32, respectively. The increase in the field intensity
can be attributed to �higher� resonance frequencies closer to
the DBE frequency, thus having slower group velocity.

B. Layer thickness perturbations

Next, we assess the sensitivity of PhC responses to layer
thickness perturbations. For this purpose, we randomly per-
turb the thickness of all cells for the PhC with N=16. The
thickness of each cell is assumed to be a �independent�

0 1 2 3 4 5 6 7 8
0

4

8

12

16

20

Position

|E|
max
2

FBW=0%
FBW=0.01%
FBW=0.05%
FBW=0.1%

FIG. 7. Maximum field intensity �E�max
2 inside the DBE PhC

with N=8 under sine-wave-modulated Gaussian pulse excitations.
Large fractional bandwidth �FBW� leads to a decrease on field en-
hancement effects. Here, FBW=0% means a sine-wave excitation
�without Gaussian pulse modulation�.
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FIG. 8. Same as Fig. 7 for the DBE PhC with N=16. The effect
of the FBW on the field intensity is more pronounced for the
N=16 case, compared to the N=8 case.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

Position

|E|2

with ground plane
without ground plane

FIG. 9. Ground plane effect on the response of the DBE PhC
with N=8. The relative increase in the field intensity due to the
ground plane is about fivefold. Note that the field distribution be-
comes asymmetric.
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FIG. 10. Ground plane effect on the response of the DBE PhC
with N=16. The relative increase in the field intensity due to the
ground plane is about fourfold. Note that the field distribution be-
comes slightly asymmetric.
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Gaussian random variable centered on the nominal thickness.
For each variance, an ensemble with 12 realizations is con-
sidered. Figure 12 shows the steady-state time-averaged �E�2
inside the DBE PhC with the perturbed layer thickness. As
can be seen from this figure, small variations in the layer
thickness can have a strong impact on the DBE PhC perfor-
mance �due to the sensitivity of the Fabry-Perot resonance to
geometrical parameters�. Figure 13 shows the steady-state
time-averaged �E�2 inside the RBE PhC with the same thick-
ness perturbations. It is observed that the RBE PhC is less
sensitive to the layer thickness perturbations compared to the
DBE PhC. Figure 14 displays the peak value of �E�2 inside
the DBE PhC and RBE PhC under various layer thickness
perturbations and PhC sizes. The DBE PhC with N=16 pro-
duces less enhancement in the field intensity than the RBE
PhC with N=16 when the layer thickness is perturbed by
about 0.3%. We also display the peak value of �E�2 inside the
RBE PhC with N=38 �which has a similar performance in
terms of intensity increase to the DBE PhC with N=16�. As
shown in Fig. 14, the DBE PhC with N=16 is similarly
sensitive to the considered layer thickness perturbations as

the RBE PhC with N=38, with the former yielding a little bit
smaller field intensity. Table I summarizes the peak value of
field intensity under considered layer thickness perturbations.

C. Dielectric losses

The sensitivity of the PhC response to dielectric losses in
the A layers is illustrated in Fig. 15, where a loss tangent of
10−4 produces a 60% decrease in the peak field intensity in
the DBE PhC and a 10% decrease in the peak field intensity
in the RBE PhC for the same number of N=16 layers. Note
how the DBE PhC with N=16 shows a very similar sensitiv-
ity curve as the RBE PhC with N=38. It should be further
noted that dielectric losses change the resonance peak fre-
quency somewhat, as shown in Fig. 16. Therefore, the results
presented in Fig. 15 also include any detuning effect in the
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FIG. 11. Ground plane effect on the response of the DBE PhC
with N=32. The relative increase in the field intensity due to the
ground plane is again about fourfold.

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Position

|E|2

no perturbation
0.01% perturbation
0.1% perturbation
1% perturbation

FIG. 12. Effect of layer thickness perturbations on the response
of the DBE PhC with N=16. Small thickness perturbations lead to
a decrease on field enhancement effects, as expected.
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FIG. 13. Effect of layer thickness perturbations on the response
of the RBE PhC with N=16. The decrease is relatively less pro-
nounced than for the DBE PhC with N=16, but the absolute inten-
sity enhancements are still well below those produced by the DBE
PhC under 0.1% perturbations; see Fig. 12.
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FIG. 14. �Color online� Peak value of �E�2 inside PhCs with
layer thickness perturbations. The thickness of each cell is ran-
domly perturbed. For each standard deviation, 12 realizations are
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Fabry-Perot resonances produced by the dielectric losses,
since the frequency of the excitation signal is kept constant.

VI. SUMMARY AND CONCLUSION

We examined Fabry-Perot resonances in finite-stack DBE
PhCs. The gigantic amplitude increase produced by such
resonances was contrasted to similar effects yielded by RBE
PhCs. The numerical analysis has shown that the field inten-
sity inside DBE PhCs increases approximately as N3.8, where
N is the number of unit cells. It has been observed that a
ground plane can boost the field intensity inside DBE PhCs.
In particular, the peak field intensity inside DBE PhCs with
N=8 and N=16, and backed by ground planes, is about 5.6
and 4 times larger, respectively, than the peak field intensity
inside DBE PhCs with equal lengths.

We have performed a sensitivity analysis of DBE PhC
responses under perturbations on geometrical �layer thick-
ness� and material �dielectric losses� parameters and com-
pared the impact of these perturbations on the DBE and RBE
PhC responses. As expected, the field intensity enhancement
in DBE PhCs deteriorates under small perturbations of the
layer thickness. On the other hand, the overall response is
quite robust to the presence of dielectric losses. For the DBE

PhC with N=16, a loss tangent of 10−5 decrease the peak
intensity by only about 10%.

A full-wave CE-ADI-FDTD algorithm has been devel-
oped to anisotropic media based on a D-H-E formulation to
decouple the update of the constitutive equations from the
update of the Maxwell’s curl equations written in terms of
�complex� field envelopes. The CE-ADI-FDTD algorithm is
advantageous over both conventional FDTD and ADI-FDTD
algorithms for DBE PhC analysis, with a dramatic reduction
on the overall computation time being achieved. Contrary to
the traditional ADI-FDTD algorithm, the numerical disper-
sion error of the CE-ADI-FDTD algorithm for narrow-band
problems remains small unless the time step size approaches
the Nyquist limit.
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APPENDIX: CE-ADI-FDTD ALGORITHM FOR
ANISOTROPIC MEDIA

In this appendix, we describe the CE-ADI-FDTD algo-
rithm used in the analysis.

Consider an anisotropic media with anisotropy in the xy
plane under a y-polarized plane wave propagating along z, as
illustrated in Fig. 1. Both x and y components should be
considered simultaneously due to the cross coupling of trans-
verse electric and magnetic components. Maxwell’s curl
equations are expressed as

�

�t
Dx +

	z

�0
Dx = −

�

�z
Hy , �A1�

TABLE I. Field intensity under layer thickness perturbations.

Perturbations DBE �N=16� RBE �N=16� RBE �N=38�

0.005% 98.5167 17.6172 99.7660

0.01% 85.8719 17.5628 96.7120

0.05% 31.4252 17.2379 37.4918

0.1% 25.0403 16.4865 31.6033

0.5% 1.8743 7.1981 3.1802

1% 1.6433 3.7178 2.3190
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FIG. 15. �Color online� Peak value of �E�2 inside PhCs with
losses in A layers. The dashed lines indicate lossless PhC results.
For the same N, the DBE PhC is more sensitive to dielectric losses
than the RBE PhC. However, considering similar �field enhance-
ment� performance, the DBE PhC with N=16 shows similar sensi-
tivity to the considered dielectric losses as the RBE PhC with N
=38.
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�

�t
Dy +

	z

�0
Dy =

�

�z
Hx, �A2�

�

�t
Hx +

	z

�0
Hx =

�

� � z
Ey , �A3�

�

�t
Hy +

	z

�0
Hy = −

�

� � z
Ex. �A4�

In the above, 	z is the artificial conductivity profile along the
z direction that implements a perfectly matched layer absorb-
ing boundary condition.24–27 Conventional Maxwell’s curl
equations are recovered by setting 	z=0.

We assume F=Re�F̃ ·ej�ct�, where �c is the carrier fre-

quency, F denotes the field components, and F̃ denotes the
corresponding complex envelope. Maxwell’s curl equations
in terms of the complex envelopes are expressed as

�

�t
Dx
˜ + j�cDx

˜ +
	z

�0
Dx
˜ = −

�

�z
Hy
˜ , �A5�

�

�t
Dy
˜ + j�cDy

˜ +
	z

�0
Dy
˜ =

�

�z
Hx
˜, �A6�

�

�t
Hx
˜ + j�cHx

˜ +
	z

�0
Hx
˜ =

�

� � z
Ey
˜, �A7�

�

�t
Hy
˜ + j�cHy

˜ +
	z

�0
Hy
˜ = −

�

� � z
Ex
˜. �A8�

The relevant constitutive equation is written as

D̃ = ���Ẽ , �A9�

with permittivity tensor of the form

��� = �0��xx �xy 0

�xy �yy 0

0 0 �zz
�

= �0�� + � cos�2�� � sin�2�� 0

� sin�2�� � − � cos�2�� 0

0 0 �zz
� , �A10�

where the parameter � is the magnitude of the in-plane an-
isotropy and � is the orientation angle of the principal axis of
the permittivity tensor in the xy plane.

In the ADI algorithm,14,15 the update at each time step n is
divided into two substeps. For simplicity, we omit the tilde in
update equations that follow. For the first substep, discretized
equations from Maxwell’s curl, Eqs. �A5�–�A8�, can be writ-
ten as

Dxk

n+1/2 = cd1Dxk

n − cd2�Hyk+1/2
n − Hyk−1/2

n � , �A11�

Dyk

n+1/2 = cd1Dyk

n + cd2�Hxk+1/2
n+1/2 − Hxk−1/2

n+1/2� , �A12�

Hxk+1/2
n+1/2 = ch1Hxk+1/2

n + ch2�Eyk+1

n+1/2 − Eyk

n+1/2� , �A13�

Hyk+1/2
n+1/2 = ch1Hyk+1/2

n − ch2�Exk+1

n − Eyk

n � , �A14�

where the subscript refers to spatial grid indexing along z
and the superscript refers to the time step index. The
coefficients above are given by cd1=ch1=
− /
+ and
cd2=�ch2=
0 /
+, where 
�=1�0.25�t�j�c+	z /�0� and


0=0.5�t /�z. The update equation for Ẽ can be obtained
from the constitutive equation �A9� as

Exk

n+1/2 = ce1xDxk

n+1/2 + ce2Dyk

n+1/2, �A15�

Eyk

n+1/2 = ce1yDyk

n+1/2 + ce2Dxk

n+1/2, �A16�

where ce1x=�yy / ��0�e�, ce1y =�xx / ��0�e�, and
ce2=−�xy / ��0�e�, with �e=�xx�yy −�xy

2 . From Eq. �A12�, we
see that Dy

n+1/2 cannot be updated explicitly. By substituting
Eq. �A16� into Eq. �A13� and plugging the resulting equation
into Eq. �A12�, we obtain an implicit equation for Dy

n+1/2 in a
form of the tridiagonal system as follows:
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FIG. 17. CE-ADI-FDTD results using various CNs for the
steady-state time-averaged field intensity �E�2 inside the DBE PhC
with N=16.
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FIG. 18. ADI-FDTD results using various CNs for the
steady-state time-averaged field intensity �E�2 inside the DBE PhC
with N=16.
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− 
−,k
Dyk−1

n+1/2 + �1 + �−,k
+ �+,k

�Dyk

n+1/2 − 
+,k
Dyk+1

n+1/2

= cd1,k
Dyk

n + cd2,k
�ch1,k+1/2

Hxk+1/2
n+1/2 − ch1,k−1/2

Hxk−1/2
n+1/2�

+ 
−,k
Dxk−1

n+1/2 − ��−,k
+ �+,k

�Dxk

n+1/2 + 
+,k
Dxk+1

n+1/2,

�A17�

where

��,k
= cd2,k

ch2,k�1/2
ce1y,k

,


�,k
= cd2,k

ch2,k�1/2
ce1y,k�1

. �A18�

For clarity, the spatial grid indexing is presented explicitly in
the coefficients. The tridiagonal system can be efficiently
solved in O�N� operations. We can summarize the update
procedure for the first substep as follows: �i� update Dx

n+1/2

explicitly from Eq. �A11�, �ii� update Dy
n+1/2 implicitly from

Eq. �A17�, �iii� update explicitly Ex
n+1/2 from Eq. �A15� and

Ey
n+1/2 from Eq. �A16�, and �iv� update Hx

n+1/2 and Hy
n+1/2

explicitly from Eqs. �A13� and �A14�, respectively.
An analogous procedure follows for the second substep.

Note that the above algorithm recovers the conventional
ADI-FDTD algorithm by setting the carrier frequency �c
zero and by using real arithmetics. The above refers to loss-
less anisotropic dielectrics. The extension to lossy aniso-
tropic dielectrics is presented in Ref. 28

Figure 17 shows the steady-state time-averaged �E�2 in-
side the DBE PhC with N=16, calculated by the CE-ADI-
FDTD and FDTD algorithms. Very good agreement is ob-
served between FDTD and CE-ADI-FDTD results, for all
CNs considered. On the other hand, a discrepancy is ob-
served between ADI-FDTD and FDTD results, as shown in
Fig. 18. The ADI-FDTD results start to be compromised for
CNs as low as 4. The ADI-FDTD results deteriorate as the

CN increases because of numerical dispersion.18

Table II summarizes the maximum value of the instanta-
neous field intensity ��E�max

2 � inside the DBE PhC and the
normalized computation time for the three methods. We no-
tice that the maximum value of instantaneous field intensity
is twice as the maximum value of time-averaged field inten-
sity. The difference of �E�max

2 between the CE-ADI-FDTD
algorithm with NC=250 and the FDTD algorithm is only
about 0.03%. For the same CN, the computation time of the
CE-ADI-FDTD algorithm is longer than the ADI-FDTD al-
gorithm because the former requires complex number arith-
metic. Despite the increase of computation time for the same
CN, the CE-ADI-FDTD algorithm reduces computation time
dramatically because it allows for much larger time steps.
For example, the CPU time of the CE-ADI-FDTD algorithm
with NC=250 is reduced to ca. 5.25% of the FDTD algorithm
within 99.97% accuracy. In terms of memory requirements,
the ADI-FDTD algorithm requires 27% more memory than
the FDTD algorithm and the CE-ADI-FDTD algorithm re-
quires 72% more memory than the FDTD algorithm, due
mainly to complex arithmetic requirements.

Figure 19 shows the error in CE-ADI-FDTD results for
various CNs in the case of the DBE PhC with N=8. The
difference between the CE-ADI-FDTD and FDTD algo-
rithms does not increase noticeably as the time step size is
increased. In fact, the accuracy of the CE-ADI-FDTD results
is nearly invariant unless NC�750 �as it approaches the Ny-
quist limit�. Note that CE-ADI-FDTD algorithm has very
small numerical dispersion error at the carrier frequency, as
pointed out in Ref. 20.
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